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Chapter I Introduction

This chapter details the motivation for our research topic: “Studying and developing
non-blocking distributed MPSC queues”, based on which we set out the objectives and
scope of this study. To summarize, we then come to the formulation of our research
question and give a high-level overview of the thesis. We end this chapter with a brief
description of the structure of the rest of this document.

1.1 Motivation

The demand for computation power has been increasing relentlessly. Increasingly
complex computation problems arise and accordingly more computation power is
required to solve them. Much engineering effort has been put forth toward obtaining
more computation power. A popular topic in this regard is distributed computing:
The combined power of clusters of commodity hardware can surpass that of a single
powerful machine [3].

To harness the power of distributed systems, specialized algorithms and data structures
need to be devised. Two especially important properties of distributed systems are
performance and fault tolerance [4]. Therefore, the algorithms and data structures
running on distributed systems need to be highly efficient and fault tolerant. Regarding
efficiency, we are concerned with the algorithms’ throughput and latency, which are
the two main metrics to measure performance. Considering fault tolerance, we are
especially interested in the progress guarantee [5] characteristic of the algorithms. The
progress guarantee criterion divides the algorithms into two groups: blocking and non-
blocking. Blocking algorithms allow one faulty process to delay the other processes
forever, which is not fault tolerant [6]. Non-blocking algorithms are safeguarded
against this problem, exhibiting a higher degree of fault tolerance [7].

One of the algorithms that has seen applications in the distributed domain is the
multi-producer, single-consumer (MPSC) queue algorithm [1]. Furthermore, there are
applications and programming patterns in the shared-memory domain that can poten-
tially see similar usage in the distributed domain, such as the actor model [8] or the
fan-out fan-in pattern [9]. Although the more general multi-producer, multi-consumer
(MPMC) queues suffice for the MPSC workloads, they are typically too expensive for
these use cases [10], [11]. Therefore, supporting a specialized non-blocking distributed
MPSC queue is still valuable.

However, currently in the literature, there is only one distributed MPSC queue,
AMQueue [1]. Moreover, even though the author claims that AMQueue is non-
blocking, we found that AMQueue is actually blocking (Section 3.2). This is unlike the
shared-memory domain, where there are a lot more research on non-blocking MPSC
queues [10], [11], [12], [13]. This apparent gap between the two domains have been
bridged by some recent research to adapt non-blocking shared-memory algorithms to
distributed environments [14], [15], [16], [17]. The work by [17] introduces a method
for creating non-blocking distributed data structures within the partitioned global
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address space (PGAS) framework, particularly targeting the Chapel programming
language. However, their methodology faces a significant limitation: it relies on double-
word compare-and-swap (DCAS) or 128-bit compare-and-swap (CAS) operations to
prevent ABA problems, which lack support from most remote direct memory access
(RDMA) hardware systems [17]. The HCL framework [16] provides a distributed data
structure library built on RPC over RDMA technology. While functional, this approach
demands specialized hardware capabilities from contemporary network interface
cards, limiting its portability [15]. BCL Core [14] presents a highly portable solution
capable of interfacing with multiple distributed programming backends including
MPI, SHMEM, and GASNet-EX. However, BCL Core’s architecture incorporates 128-
bit pointers, creating the same RDMA hardware compatibility issues as [17]. For our
research, we have selected BCL CoreX [15] and adopted its design philosophy to adapt
existing shared-memory MPSC queues for distributed computing environments. BCL
CoreX [15] extends the original BCL [14] framework with enhanced features that sim-
plify the development of non-blocking distributed data structures. A key innovation
in their approach is the implementation of 64-bit pointers, which are compatible with
virtually all large-scale computing clusters and supported by most RDMA hardware
configurations. To address ABA problems without relying on specialized instructions
like DCAS, they have developed a distributed hazard pointer mechanism. This generic
solution provides sufficient portability and flexibility to accommodate the adaptation
of most existing non-blocking shared-memory data structures to distributed environ-
ments.

In summary, we focus on the design of efficient non-blocking distributed MPSC queues
using the BCL CoreX library as the main implementation framework. The next few
sections will list the objectives in more details (Section 1.2, Section 1.3), sum them up
in a research question (Section 1.4) and an overview picture of the thesis (Section 1.5).

1.2 Objective

Based on what we have listed out in Section 1.1, we aim to:

« Investigate the principles underpinning the design of fault-tolerant and performant
shared-memory algorithms.

« Investigate state-of-the-art shared-memory MPSC queue algorithms as case stud-
ies to support our design of distributed MPSC queue algorithms.

« Investigate existing distributed MPSC algorithms to serve as a comparison base-
line.

« Model and design distributed MPSC queue algorithms using techniques from the
shared-memory literature, specifically the BCL CoreX library.

« Utilize the shared-memory programming model to evaluate various theoretical
aspects of distributed MPSC queue algorithms: correctness and progress guarantee.

+ Model the theoretical performance of distributed MPSC queue algorithms that are
designed using techniques from the shared-memory literature.
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+ Collect empirical results on distributed MPSC queue algorithms and discuss
important factors that affect these results.

1.3 Scope

The following narrows down what we are going to investigate in the shared-memory
literature and which theoretical and empirical aspects we are interested in for our
distributed algorithms:

+ Regarding the investigation of the design principles in the shared-memory litera-
ture, we focus on fault-tolerant and performant concurrent algorithm design using
atomic operations and common problems that often arise in this area, namely, ABA
problem and safe memory reclamation problem.

« Regarding the investigation of shared-memory MPSC queues currently in the
literature, we focus on linearizable MPSC queues that follow strict FIFO semantics
and support at least lock-free enqueue and dequeue operations.

+ Regarding correctness, we concern ourselves with the linearizability correctness
condition.

» Regarding fault tolerance, we concern ourselves with the concept of progress
guarantee, that is, the ability of the system to continue to make forward progress
despite the failure of one or more components of the system.

« Regarding algorithm prototyping, benchmarking and optimizations, we assume an
MPI-3 setting.

+ Regarding empirical results, we focus on performance-related metrics, e.g.
throughput and latency:.

1.4 Research question

Any research effort in this thesis revolves around this research question:

“How to utilize shared-memory programming principles to model and design distrib-
uted MPSC queue algorithms in a correct, fault-tolerant and performant manner?”

We further decompose this question into smaller subquestions:

1. How to model the correctness of a distributed MPSC queue algorithm?

2. Which factors contribute to the fault tolerance and performance of distributed
MPSC queue algorithms?

3. Which shared-memory programming principles are relevant in modeling and
designing distributed MPSC queue algorithms in a fault-tolerant and performant
manner?

4. Which shared-memory programming principles need to be modified to more effec-
tively model and design distributed MPSC queue algorithms in a fault-tolerant and
performant manner?

1.5 Thesis overview

An overview of this thesis is given in Figure 1.
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Distributed MPSC queue design

Shared-memory
Theoretical aspects programming design Empirical aspects

techniques & Issues
Correctness Progress guarantee Performance model Atomic Safe memory
operations reclamation
ABA problem

Worst-case time
Linearizability Lock-freedom

Figure 1: An overview of this thesis.

This thesis explores the shared-memory programming model to design fault-tolerant
and performant concurrent algorithms using atomic operations. Traditionally, in this
aspect, two notorious problems often arise: ABA problem and safe memory reclama-
tion. We investigate the traditional techniques used in the shared-memory literature
to resolve these problems and appropriately adapt them to solve similar issues when
designing fault-tolerant and performant distributed MPSC queues.

This thesis contributes two new wait-free distributed MPSC queue algorithms. Theo-
retically, we are concerned with their correctness (linearizability), progress guarantee
(lock-freedom and wait-freedom) which has an implication on their fault tolerance
and their theoretical performance, which is approximated by their number of remote
operations and local operations.

This thesis concludes with an empirical analysis of our novel algorithms to see if their
actual behavior matches our theoretical performance model, interprets these results
and discusses their implications.

1.6 Structure

The rest of this report is structured as follows:

Chapter II discusses the theoretical foundation this thesis is based on. As mentioned,
this thesis investigates the principles of shared-memory programming and the existing
state-of-the-art shared-memory MPSC queues. We then explore the utilities offered
by MPI-3 and BCL CoreX to implement distributed algorithms modeled by shared-
memory programming techniques.

Chapter III surveys the shared-memory literature for state-of-the-art queue algorithms,
specifically MPSC queues. We specifically focus on non-blocking shared-memory algo-
rithms that have the potential to be adapted efficiently for distributed environments.
This chapter additionally surveys existing distributed MPSC algorithms to serve as a
comparison baseline for our novel distributed MPSC queue algorithms.

Chapter IV introduces our novel distributed MPSC queue algorithms, designed using
shared-memory programming techniques and inspired by the selected shared-memory
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MPSC queue algorithms surveyed in Chapter III. It specifically presents our adaptation
efforts of existing algorithms in the shared-memory literature to make their distributed
implementations feasible and efficient.

Chapter V details our benchmarking metrics and elaborates on our benchmarking
setup. We aim to demonstrate results on how well our novel MPSC queue algorithms
perform, additionally compared to existing distributed MPSC queues. Finally, we
discuss important factors that affect the runtime properties of distributed MPSC queue
algorithms.

Chapter VI concludes what we have accomplished in this thesis and considers future
possible improvements to our research.
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Chapter II Background

This chapter provides various information about the terminology referenced through-
out this thesis. To motivate the discussion of MPSC queues in Section 2.2, we first
discuss two irregular applications in Section 2.1. Next, we decide what it means for
a concurrent algorithm to be correct in Section 2.3 and the progress guarantee char-
acteristics of concurrent algorithms in Section 2.4. From there, we decide to design
linearizable non-blocking distributed MPSC queues. Therefore, we are concerned with
the tools needed to design non-blocking algorithms in Section 2.5 and the issues
that arise in this design process such as ABA problem and safe memory reclamation
problem in Section 2.6. We finally introduce the practical libraries to help us realize
non-blocking distributed MPSC queues in Section 2.7, Section 2.8 and Section 2.9.

2.1 Irregular applications

MPSC queue (Section 2.2) and its applications belong to a class called irregular
applications. Designing irregular applications needs to take into account their special
properties, which motivates Section 2.7, Section 2.8, Section 2.9. Therefore, before we
discuss MPSC queue in Section 2.2, we explain the term “irregular application” in this
section.

Irregular applications [18] are a class of programs particularly interesting in distributed
computing. They are characterized by:

« Unpredictable memory access: Before the program is actually run, we cannot know
which data it will need to access. We can only know that at run time.

+ Data-dependent control flow: The decision of what to do next (such as which data
to access next) is highly dependent on the values of the data already accessed, hence
the unpredictable memory access property because we cannot statically analyze
the program to know which data it will access. The control flow is inherently
engraved in the data, which is not known until runtime.

Irregular applications are interesting because they demand special techniques to
achieve high performance [18]. One specific challenge is that this type of application
is hard to model in traditional MPI APIs using the Send/Receive interface [19]. This is
specifically because using this interface requires a programmer to have already antic-
ipated communication within pairs of processes before runtime, which is difficult with
irregular applications. The introduction of MPI remote memory access (RMA) in MPI-2
and its improvement in MPI-3 has significantly improved MPI’s capability to express
irregular applications comfortably [20]. This will be explained further in Section 2.7.
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2.1.1 Actor model as an irregular application

Mailbox
A

AN

Message Message

AN

Message

Figure 2: Actor model visualization.

The actor model [8] in actuality is a type of irregular application supported by the
concurrent MPSC queue data structure.

Each actor can be a process or a compute node in the cluster, carrying out a specific
responsibility in the system. From time to time, there is a need for the actors to commu-
nicate with each other. For this purpose, the actor model offers a mailbox local to each
actor. This mailbox exhibits MPSC queue behavior: Other actors can send messages to
the mailbox to notify the owner actor and the owner actor at their leisure repeatedly
extracts messages from its mailbox. The actor model provides a simple programming

model for concurrent processing.

The reasons why the actor model is an irregular application are straightforward to see:
+ Unpredictable memory access: The cases in which one actor can anticipate which
one of the other actors can send it a message are pretty rare and application-
specific. As a general framework, in an actor model, the usual assumption is that
any number of actors can try to communicate with an actor at some arbitrary time.

By this nature, the communication pattern is unpredictable.
« Data-dependent control flow: If an actor A sends a message to another actor B, and
when B reads this message, B decides to send another message to another actor
C. As we can see, the control flow is highly engraved in the messages, or in other
words, the messages drive the program flow, which can only be known at runtime.
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2.1.2 Fan-out/Fan-in pattern as an irregular application

Task

‘\
Subtask #1 ‘ Subtask #2 ‘ ‘ Subtask #3 ‘

Results #1 | Resuits #2 | Results #3 |

Result
queue
(MPSC)

Aggregation
node

Figure 3: Fan-out/Fan-in pattern visualization.

The fan-out/fan-in pattern [9] is another type of irregular application supported by the
concurrent MPSC queue data structure.

In this pattern, there is a big task that can be split into subtasks to be executed concur-
rently on some work nodes. In the execution process, each worker produces a result set,
each enqueued back to a result queue located on an aggregation node. The aggregation
node can then dequeue from this result queue to perform further processing. Clearly,
this result queue exhibits MPSC behavior.

The fan-out/fan-in pattern exhibits less irregularity than the actor model, however.
Usually, the worker nodes and the aggregation node are known in advance. The aggre-
gation node can anticipate Send calls from the worker nodes. Still, there is a degree
of irregularity that this pattern exhibits: How can the aggregation node know how
many Send calls a worker node will issue? This is highly driven by the task and the
data involved in this task, hence, we have the data-dependent control flow property.
One can still statically calculate or predict how many Send calls a worker node will
issue. Nevertheless, this is problem-specific. Therefore, the memory access pattern is
somewhat unpredictable. Notice that if supported by a concurrent MPSC queue data
structure, the fan-out/fan-in pattern is free from this burden of organizing the right
amount of Send/Receive calls. Thus, combining with the MPSC queue, the fan-out/fan-
in pattern becomes more general and easier to program.

We have seen the role MPSC queues play in supporting irregular applications. It is
important to understand what really comprises an MPSC queue data structure.

Specialized Project Report - Semester 242 (2024 - 2025) Page 15/66



@ HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY
‘J FACULTY OF COMPUTER SCIENCE AND ENGINEERING

2.2 MPSC queue

Having established the notion of irregular applications in Section 2.1, we can dicuss
about our design goal, distributed MPSC queue, which is an irregular application itself,
in this section. The design criteria will be detailed later, in Section 2.3 and Section 2.4.

Multi-producer, single-consumer (MPSC) queue is a specialized concurrent first-in
first-out (FIFO) data structure. A FIFO is a container data structure where items can be
inserted into or taken out of, with the constraint that the items that are inserted earlier
are taken out earlier. Hence, it is also known as the queue data structure. The process
that performs item insertion into the FIFO is called the producer and the process that
performs item deletion (and retrieval) is called the consumer.

In concurrent queues, multiple producers and consumers can run concurrently. One
class of concurrent FIFOs is the MPSC queue, where one consumer may run in parallel
with multiple producers.

The reasons we are interested in MPSC queues instead of the more general multi-pro-
ducer, multi-consumer (MPMC) queue data structures are that (1) high-performance
and high-scalability MPSC queues are much simpler to design than MPMCs while
(2) MPSC queues are powerful enough to solve certain problems, as demonstrated in
Section 2.1. The MPSC queue in actuality is an irregular application in itself:

+ Unpredictable memory access: As a general data structure, the MPSC queue allows
any process to enqueue and dequeue at any time. By nature, its memory access
pattern is unpredictable.

+ Data-dependent control flow: The consumer’s behavior is entirely dependent on
whether and which data is available in the MPSC queue. The execution paths of
MPSC queues can vary, based on the queue contention i.e. some processes may
back off or retry some failed operations; this scenario often arises in lock-free data
structures.

As an implication, some irregular applications can actually “push” the “irregularity
burden” to the distributed MPSC queue, which is already designed for high perfor-
mance and fault tolerance. This provides a comfortable level of abstraction for
programmers that need to deal with irregular applications.

2.3 Correctness condition of concurrent algorithms

We have established our design goal in the previous sections (Section 2.1, Section 2.2),
that is MPSC queue. During this design process, we have to take into account its
correctness, which is the subject of this section. The fault tolerance characteristic,
although important, is less compared to correctness, and so will be deferred to
Section 2.4.

Correctness of concurrent algorithms is hard to define, regarding the semantics of
concurrent data structures like MPSC queues. One effort to formalize the correctness
of concurrent data structures is the definition of linearizability [21]. A method call
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on the FIFO can be visualized as an interval spanning two points in time. The starting
point is called the invocation event and the ending point is called the response
event. Linearizability informally states that each method call should appear to take
effect instantaneously at some moment between its invocation event and response
event [5]. The moment the method call takes effect is termed the linearization point.
Specifically, suppose the following:
+ We have n concurrent method calls m;, mo, ..., m,,.
« Each method call m, starts with the invocation event happening at timestamp s,
and ends with the response event happening at timestamp e,. We have s, < e,
foralll <3 <n.
+ Each method call m; has the linearization point happening at timestamp [, so

that s, <1, <e,.

Then, linearizability means that if we have [; <l, < ... <, the effect of these n
concurrent method calls m, m,, ..., m,, must be equivalent to calling m,, m,, ..., m
sequentially, one after the other in that order.

n

Method 4
4—};%»
Method 3 :
4—};&»
Method 2
Method 1

*
& &
*

L J

time
t1 2 t3 t4
Figure 4: Linearization points of method 1, method 2, method 3, method 4 happen at
t, <ty <ts <ty therefore, their effects will be observed in this order as if we call
method 1, method 2, method 3, method 4 sequentially.

Linearizability is widely used as a correctness condition because of (1) its composability
(if every component in the system is linearizable, the whole system is linearizable),
which promotes modularity and ease of proof (2) its compatibility with human
intuition, i.e. linearizability respects real-time order [21]. Naturally, we choose lineariz-
ability to be the only correctness condition for our algorithms.

2.4 Progress guarantee of concurrent algorithms

A correct algorithms can still be prone to faults at runtime, which varies from a process
experiences an unexpected delay in its execution to a process crashes indefinitely.
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Therefore, fault tolerance is also an important criteria for our design goal, distributed
MPSC queue (Section 2.2), besides correctness (Section 2.3). This section will introduce
the concept of progress guarantee, which is highly linked with fault tolerance. The
techniques to achieve fault tolerance are discussed in the next section (Section 2.5).

Progress guarantee [5] is a criterion that only arises in the context of concurrent
algorithms. Informally, it is the degree of hindrance one process imposes on another
process from completing its task. In the context of sequential algorithms, this is irrel-
evant because there is only ever one process. Progress guarantee has an implication
on an algorithm’s performance and fault tolerance, especially in adverse situations, as
we will explain in the following sections.

2.4.1 Blocking algorithms

Many concurrent algorithms are based on locks to create mutual exclusion, in which
only some processes that have acquired the locks are able to act, while the others
have to wait. While lock-based algorithms are simple to read, write and verify, these
algorithms are said to be blocking: One slow process may slow down the other faster
processes, for example, if the slow process successfully acquires a lock and then the
operating system (OS) decides to suspend it to schedule another one, this means until
the process is awakened, the other processes that contend for the lock cannot continue.

Blocking is the weakest progress guarantee one algorithm can offer; it allows one
process to impose arbitrary impedance to any other processes, as shown in Figure 5.

Time Process 1 Other processes

Susmmed ooooooooooooo

v

Figure 5: Blocking algorithm: When a process is suspended, it can potentially block
other processes from making further progress.

Blocking algorithms introduce many problems such as:
« Deadlock: There is a circular lock-wait dependency among the processes, effec-
tively preventing any processes from making progress.
« Convoy effect: One long process holding the lock will block other shorter processes
contending for the lock.
« Priority inversion: A higher-priority process effectively has very low priority
because it has to wait for another low priority process.
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Furthermore, if a process that holds the lock dies, this will render the whole program
unable to make any progress. This consideration holds even more weight in distributed
computing because of a lot more failure modes, such as network failures, node failures,
etc.

Therefore, while blocking algorithms, especially those using locks, are easy to write,
they do not provide progress guarantee because deadlock or livelock can occur and
their use of mutual exclusion is unnecessarily restrictive. Fortunately, there are other
classes of algorithms which offer stronger progress guarantees.

2.4.2 Non-blocking algorithms

An algorithm is said to be non-blocking if a failure or slowdown in one process cannot
cause the failure or slowdown in another process. Lock-free and wait-free algorithms
are two especially interesting subclasses of non-blocking algorithms. Unlike blocking
algorithms, they provide stronger degrees of progress guarantees.

2.4.2.1 Lock-free algorithms

Lock-free algorithms provide the following guarantee: Even if some processes are sus-
pended, the remaining processes are ensured to make global progress and complete in
bounded time. In other words, a process cannot cause hindrance to the global progress
of the program. This property is invaluable in distributed computing; one dead or sus-
pended process will not block the whole program, providing fault tolerance. Designing
lock-free algorithms requires careful use of atomic instructions, such as Fetch-and-add
(FAA), Compare-and-swap (CAS), etc which will be explained in Section 2.5.

Time Process 1 Other processes

Suspended

NS

Completed

L

Figure 6: Lock-free algorithm: All the live processes together always finish in a finite
amount of steps.

2.4.2.2 Wait-free algorithms

Wait-freedom offers the strongest degree of progress guarantee. It mandates that no
process can cause constant hindrance to any running process. While lock-freedom
ensures that at least one of the alive processes will make progress, wait-freedom guar-
antees that any alive process will finish in a finite number of steps. Wait-freedom can
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be desirable because it prevents starvation. Lock-freedom still allows the possibility of
one process having to wait for another indefinitely, as long as some still make progress.

Time Process 1 Other processes

Suspended

YYYwyy

Completed

Y

Figure 7: Wait-free algorithm: Any live process always finishes in a finite amount of
steps.

2.5 Popular atomic instructions in designing non-blocking algo-
rithms

As we have discussed in Section 2.4, blocking algorithms are not fault tolerant while
non-blocking ones are, specifically lock-free and wait-free algorithms. Therefore, our
design goal can be refined to linearizable non-blocking distributed MPSC queue. Tech-
niques to achieve this is discussed next in this section. Issues, however, arise during
the application of these techniques, whose resolution will be deferred to Section 2.6.

In non-blocking algorithms, finer-grained synchronization primitives than simple
locks are required, which manifest themselves as atomic instructions. Therefore, it is
necessary to get familiar with the semantics of these atomic instructions and common
programming patterns associated with them.

2.5.1 Fetch-and-add (FAA)

Fetch-and-add (FAA) is a simple atomic instruction with the following semantics: It
atomically increments a value at a memory location z by a and returns the previous
value just before the increment. Informally, FAA’s effect is equivalent to the function
in Procedure 1, assuming that the function is executed atomically.

Procedure 1: int fetch_and_add(int* x, int a)

1 old_value = *x
2 *X = *X + a

3 return old_value

Fetch-and-add can be used to create simple distributed counters.
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2.5.2 Compare-and-swap (CAS)

Compare-and-swap (CAS) is probably the most popular atomic operation instruction.
The reason for its popularity is (1) CAS is a universal atomic instruction with the
consensus number of oo, which means it is the most powerful atomic instruction [22]
(2) CAS is implemented in most hardware (3) some concurrent lock-free data structures

such as MPSC queues are more easily expressed using a powerful atomic instruction
such as CAS.

The semantics of CAS is as follows. Given the instruction CAS(memory location, old
value, new value), atomically compares the value at memory location to see if it
equals old value; if so, sets the value at memory location to new value and returns
true; otherwise, leaves the value at memory location unchanged and returns false.
Informally, its effect is equivalent to the function in Procedure 2.

Procedure 2: bool compare_and_swap(int* x, int old_val, int new_val)

1 if (*x == old_val)
2 *X = new_val
3 return true

4 return false

Compare-and-swap is very powerful and consequently, pervasive in concurrent algo-
rithms and data structures.

Non-blocking concurrent algorithms often utilize CAS as follows. The steps 1-3 are

retried until success.

1. Read the current value old value = read(memory location).

2. Compute new value from old value by manipulating some resources associated
with old value and allocating new resources for new value.

3. Call cAS(memory location, old value, new value). If that succeeds, the new
resources for new value remain valid because it was computed using valid resources
associated with old value, which has not been modified since the last read. Other-
wise, free up the resources we have allocated for new value because old value is
no longer there, so its associated resources are not valid.

This scheme is, however, susceptible to the ABA problem, which will be discussed in
Section 2.6.1.

2.5.3 Load-link/Store-conditional (LL/SC)

Load-link/Store-conditional is actually a pair of atomic instructions for synchroniza-
tion.

Semantically, load-link returns a value currently located at a memory location x while
store-conditional sets the memory location z to a value v if there is no other write to
x since the last load-link call, otherwise, the store-conditional call would fail.
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Intuitively, LL/SC provides an easier synchronization primitive than CAS: LL/SC
ensures that a store-conditional can only succeed if there is no access to a memory
location, while CAS can still succeed in this case if the value at the memory location
does not change. Due to this property, LL/SC is not vulnerable to the ABA problem
(see Section 2.6.1). However, CAS is in fact as powerful as LL/SC, considering that they
can implement each other [22].

Practically, store-conditional can still fail even if thereis no write to the same memory

location since the last load-link call. This is called a spurious failure. For example,

consider the following generic sequence of events:

1. Thread X calls load-link on x and loads out v.

2. Thread X computes a new value v’.

3. Some exceptional event happens (discussed below). Assume that no other threads
access z during this time.

4. Thread X calls store-conditional to store v’ to x. It should succeed but fails anyway.

Exceptional events that can cause the store-conditional to fail spuriously include:

+ Cache line flushing: If the cache line that caches the memory location x is written
back to memory, logically, the memory location x has been accessed and therefore,
the store-conditional fails.

+ Context switch: If thread X is swapped out by the OS, cache lines may be invali-
dated and flushed out, which consequently leads to the first scenario.

LL/SC even though as powerful as CAS, is not as widespread as CAS; in fact, as of
MPI-3, only CAS is supported.

2.6 Common issues when designing non-blocking algorithms

Atomic instructions are the option we choose when it comes to designing non-blocking
algorithms (Section 2.5). However, there are problems usually associated with this
approach, that is ABA problem (Section 2.6.1) and safe memory reclamation problem
(Section 2.6.2). Proper solutions to these issues are required to complete our design
process, which has been discussed at length in Section 2.2, Section 2.3, Section 2.4, Sec-

tion 2.5. We move on to implementation techniques in section Section 2.7, Section 2.8,
[15].

2.6.1 ABA problem

The ABA problem [23] is a notorious problem associated with the compare-and-swap
atomic instruction. Because CAS is so widely used in non-blocking algorithms, the
ABA problem almost has to always be accounted for.

As areminder, here’s how CAS is often utilized in non-blocking concurrent algorithms:

The steps 1-3 are retried until success.

1. Read the current value o1d value = read(memory location).

2. Compute new value from old value by manipulating some resources associated
with old value and allocating new resources for new value.
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(a) Process X wants to pop a value, it

Top ——M A

Call cAS(memory location, old value, new value). If that succeeds, the new
resources for new value remain valid because it was computed using valid resources
associated with old value, which has not been modified since the last read. Other-
wise, free up the resources we have allocated for new value because old value is
no longer there, so its associated resources are not valid.

Top ——» C

h 4
(9]

observes Top = A and Top — next =C  (b) Another process pops the value A and

Top ——> A

then suspends. sets Top to C.

Top B Cc

h 4
[==]
5
(o]

(d) Process X successfully performs the

(c) Another process pushes two values B pop by calling CAS(&Top, A, C).Top no

and A and sets Top to A. longer points to the top of the stack.
Figure 8: ABA problem in a linked-list stack.

As hinted, this scheme is susceptible to the notorious ABA problem. The following

scenario illustrates an example of the ABA problem:

1.
2.

Process 1 reads the current value of memory location and reads out A.

Process 1 manipulates resources associated with A, and allocates resources based on
these resources.

Process 1 suspends.

. Process 2 reads the current value of memory location and reads out A.

Process 2 CAS(memory location, A, B) so that resources associated with A are no
longer valid.

Process 3 CAS(memory location, B, A) and allocates new resources associated
with A.

Process 1 continues and CAS(memory location, A, new value) relying on the fact
that the old resources associated with A are still valid while in fact they aren’t.

The ABA problem arises fundamentally because most algorithms assume a memory

location is not accessed if its value is unchanged.

A specific case of the ABA problem is given in Figure 8.
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To safeguard against the ABA problem, one must ensure that between the time a
process reads out a value from a shared memory location and the time it calls CAS on
that location, there is no possibility another process has CAS-ed the memory location
to the same value.

A simple scheme that is widely used practically and also in this thesis is the unique
timestamp scheme. This scheme’s idea is simple: for each shared memory location
that is affected by CAS operations, we reserve some bits of this memory location
for a monotonic counter. Each time a CAS operation is carried out, this counter is
incremented. Theoretically, the ABA problem would never happen because combining
with this counter, the value of this memory location is always unique, due to the
counter never repeating itself. However, practically, the counter can overflow and wrap
around to the same value and the ABA problem would happen in this case. Therefore,
the counter’s range must be big enough so that this scenario can’t virtually happen.
Empirically, a counter of 32-bit should be enough. The drawback of this approach is
that we have wasted 32 meaningful bits to avoid the ABA problem.

2.6.2 Safe memory reclamation problem

The problem of safe memory reclamation [24] often arises in concurrent algorithms
that dynamically allocate memory. In such algorithms, dynamically-allocated memory
must be freed at some point. However, there is a good chance that while a process
is freeing memory, other processes contending for the same memory are keeping a
reference to that memory. Therefore, deallocated memory can potentially be accessed,
which is erroneous.

An example of unsafe memory reclamation is given in Figure 9.

Top ——™ 0 1 (free)

Top ——— 1

h 4
=

(b) The top node is popped, the reference

(a) Process X about to push a value onto X holds is no longer valid. When X re-
the stack, already reading the top pointer sumes, a freed memory location will be
but suspended. accessed.
Figure 9: Unsafe memory reclamation in a LIFO stack.

Solutions to this problem must ensure that memory is only freed when no other
processes are holding references to it. In garbage-collected programming environ-
ments, this problem can be conveniently pushed to the garbage collector. In non-
garbage-collected programming environments, however, custom schemes must be
utilized.
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2.7 MPI-3 - A popular distributed programming library interface
specification

To implement the design linearizable non-blocking distributed MPSC queues, the most
basic choice we can go with is MPI, which will be the matter of this section. We
specifically focus on the MPI-3 RMA API, because as will be explained, it facilitates the
easy implementation of irregular applications such as MPSC queues. An approach of
using MPI-3 RMA is covered in Section 2.8. More advanced implementation techniques
will be covered in Section 2.9.

MPI stands for message passing interface, which is a message-passing library inter-
face specification. Design goals of MPI include high availability across platforms,
efficient communication, thread safety, reliable and convenient communication inter-
face while still allowing hardware-specific accelerated mechanisms to be exploited [2].

2.7.1 MPI-3 RMA

RMA in MPI RMA stands for remote memory access. RMA APIs were introduced in
MPI-2 and their capabilities are further extended in MPI-3 to conveniently express
irregular applications [20]. In general, RMA is intended to support applications with
dynamically changing data access patterns where the data distribution is fixed or
slowly changing [2]. This is very similar to the properties of irregular applications
as discussed in Section 2.1. In such applications, one process, based on the data it
needs, knowing the data distribution, can compute the nodes where the data is stored.
However, because the data access pattern is not known, each process cannot know
whether any other processes will access its data. Using the traditional Send/Receive
interface, both sides need to issue matching operations by distributing appropriate
transfer parameters. This is not suitable, as previously explained; only the side that
needs to access the data knows all the transfer parameters while the side that stores
the data cannot anticipate this.

2.7.2 MPI-RMA communication operations

RMA only requires one side to specify all the transfer parameters and thus only that
side to participate in data communication [2].

To utilize MPI RMA, each process needs to open a memory window to expose
a segment of its memory to RMA communication operations such as remote
writes (MPI_PUT), remote reads (MPI_GET) or remote accumulates (MPI_ACCUMULATE,
MPI_GET_ACCUMULATE, MPI_FETCH_AND_OP, MPI_COMPARE_AND_SWAP) [2]. These remote
communication operations only require one side to specify.

2.7.3 MPI-RMA synchronization

Besides communication of data from the sender to the receiver, one also needs to
synchronize the sender with the receiver. That is, there must be a mechanism to ensure
the completion of RMA communication calls or that any remote operations have
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taken effect. For this purpose, MPI RMA provides active target synchronization and
passive target synchronization. In this document, we are particularly interested in
passive target synchronization as this mode of synchronization does not require
the target process of an RMA operation to explicitly issue a matching synchronization
call with the origin process, easing the expression of irregular applications [20].

In passive target synchronization, any RMA communication calls must be within
a pair of MPI_Win_lock/MPI_Win_unlock or MPI_Win_lock_all/MPI_Win_unlock_all.
After the unlock call, those RMA communication calls are guaranteed to have
taken effect. One can also force the completion of those RMA communication calls
without the need for the call to unlock using flush calls such as MPI_win_flush or
MPI_Win_flush_local.
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Figure 10: An illustration of passive target communication. Dashed arrows represent
synchronization (source: [2]).

2.8 Pure MPI - A porting approach of shared memory algorithms
to distributed algorithms

With MPI (Section 2.7), we have the most basic facility to adapt shared-memory algo-
rithms to distributed algorithms, which is MPI-3 RMA. However, MPI-3 RMA offer a
wide range of utilities, which may not be quite well-suited to implement non-blocking
distributed MPSC queues. In this section, we introduce one technique utilizing MPI-3
RMA to implement distributed non-blocking distributed algorithms. The BCL CoreX
library (Section 2.9) is built on top of this approach.
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In pure MPI, we use MPI exclusively for communication and synchronization. With
MPI RMA, the communication calls that we utilize are [2]:
« Remote read: MPI_Get
« Remote write: MPI_Put
« Remote accumulation: MPI_Accumulate, MPI_Get_accumulate, MPI_Fetch_and_op
and MPI_Compare_and_swap.

For lock-free synchronization, we choose to use passive target synchronization with
MPI_Win_lock_all/MPI_win_unlock_all.

In the MPI-3 specification [2], these functions are specified as in Table 1.

Operation Usage

MPI_Win_lock_all | Starts an RMA access epoch to all processes in a memory

window, with a lock type of MPI_LOCK_SHARED. The calling

process can access the window memory on all processes in

the memory window using RMA operations. This routine is
not collective.

MPI_Win_unlock_all [ Matches with an MPI_win_lock_all to unlock a window

previously locked by that MPI_Win_lock_all.

Table 1: Specification of MPI_win_lock_all and MPI_Win_unlock_all.

The reason we choose this is 3-fold:

+ Unlike active target synchronization, passive target synchronization does
not require the process whose memory is being accessed by an MPI RMA commu-
nication call to participate. This is in line with our intention to use MPI RMA to
easily model irregular applications like MPSC queues.

« Unlike active  target synchronization, MPI_Win_lock_all and
MPI_Win_unlock_all do not need to wait for a matching synchronization call in
the target process, and thus, are not delayed by the target process.

 Unlike passive target synchronization with MPI_win_lock/MPI_win_unlock,
multiple calls of MPI_Win_lock_all can succeed concurrently, so one process
needing to issue MPI RMA communication calls does not block others.

An example of our pure MPI approach with MPI_Win_lock_all/MPI_Win_unlock_all,
inspired by [20], is illustrated in the following:
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MPI_Win_lock_all(@, win);

MPI_Get(...); // Remote get

MPI_Put(...); // Remote put

MPI_Accumulate(..., MPI_REPLACE, ...); // Atomic put
MPI_Get_accumulate(..., MPI_NO_OP, ...); // Atomic get
MPI_Fetch_and_op(...); // Remote fetch-and-op
MPI_Compare_and_swap(...); // Remote compare and swap

MPI_Win_flush(...); // Make previous RMA operations take effect
MPI_Wwin_flush_local(...); // Make previous RMA operations take effect
locally

MPI_Win_unlock_all(win);

Listing 3: An example snippet showcasing our synchronization approach in MPI RMA.

Process O Process 1

lock-all E

Time

v

MPI__dccumulate

MPT_win_Flush

MPI_dccumulate dore

U:I“llﬂ clc—n”

Figure 11: An illustration of our synchronization approach in MPI RMA.

2.9 BCL CoreX

BCL CoreX [15] is a high-level library built on top of MPI to facilitate the design of
non-blocking algorithms for distributed-memory machines. In principle, it utilizes the
pure MPI approach that we have covered in Section 2.8.

A subset of the primitives provided by BCL CoreX is presented below. We will utilize
these primitives in our algorithm specification.
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gptr<T>

A global pointer that points to a variable of type T. A global pointer is one that can
point to a variable outside of the current process’s address space. The process whose
address space a global pointer points to is called the host. Like normal pointers,
pointer arithmetic also works with global pointers, which allows global pointers to
point to remote arrays.

T read(gptr<T> ptr, T* dest)

Issue a synchronous read on the location pointed to by ptr and stores the read value
in dest.

T write(gptr<T> ptr, T* src)

Issue a synchronous write on the location pointed to by ptr that writes the value
stored in src.

T faa(gptr<T> ptr, T inc)
Issue a synchronous fetch-and-add operation on the location pointed to by ptr.

T must be an integral type of less than 64 bits.

T cas(gptr<T> ptr, T old_val, T new_val)
Issue a synchronous compare-and-swap operation on the location pointed to by ptr.

T must be a type of less than 64 bits.

A remote operation occurs when one of the primitive operations is applied on the
global pointer that points to a non-local address space. Otherwise, a local operation
occurs. Typically, remote operations are very expensive compared to local operations.

Specialized Project Report - Semester 242 (2024 - 2025) Page 30/66



@ HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY
‘J FACULTY OF COMPUTER SCIENCE AND ENGINEERING

Chapter III Related works

Given our decision to adapt shared-memory data structures for creating non-blocking
distributed MPSC queues with BCL CoreX (Section 2.9), we next explore existing
non-blocking shared-memory MPSC queues in Section 3.1. Additionally, we analyze
current distributed MPSC queue implementations in Section 3.2 to establish appro-
priate benchmark comparisons. Following this analysis, we selected LTQueue as our
candidate shared-memory MPSC queue for distributed adaptation and chose AMQueue
as our primary benchmark reference.

3.1 Non-blocking shared-memory MPSC queues

There exists numerous research into the design of non-blocking shared memory
MPMCs and SPSCs. Interestingly, research into non-blocking MPSC queues is notice-
ably scarce. Although in principle, MPMC queues and SPSC queues can both be adapted
for MPSC queue use cases, specialized MPSC queues can usually yield much more
performance. In reality, we have only found 4 papers that are concerned with the direct
support of lock-free MPSC queues: LTQueue [12], DQueue [11], WRLQueue [10], and
Jiffy [13]. Table 2 summarizes the characteristics of these algorithms.

MPSC queues LTQueue | DQueue [11] [ WRLQueue Jiffy [13]
[12] [10]
ABA solution Load-link/ |Incorrect cus- Custom Custom
Store-condi- [tom scheme scheme scheme
tional @)
Safe memory recla-| Custom Incorrect cus-|  Custom Insufficient
mation scheme tom scheme scheme custom
) scheme
Progress guarantee of | Wait-free Wait-free Blocking (%) Wait-free
dequeue
Progress guarantee of | Wait-free Wait-free Wait-free Wait-free
enqueue

Table 2: Characteristic summary of existing shared memory MPSC queues. The cell
marked with (*) indicates that our evaluation contradicts the authors’ claims.

3.1.1 LTQueue

To our knowledge, LTQueue [12] is the earliest paper that directly focuses on the design
of a wait-free shared memory MPSC queue.

This algorithm is wait-free with O(logn) time complexity for both enqueues and
dequeues, with n being the number of enqueuers due to a novel timestamp-update
scheme and a tree-structure organization of timestamps.

The basic structure of LTQueue is given in Figure 12. In LTQueue, each enqueuer
maintains an SPSC queue that only it and the dequeuer access. This SPSC queue
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must additionally support the readFront operation, which returns the front element
currently in the SPSC. The SPSC can be any implementation that conforms to this
interface. In the original paper, the SPSC is represented as a simple linked list.

The rectangular nodes at the bottom in Figure 12 represent an enqueuer, whose SPSC
contains items with 2 fields: value and timestamp. Every enqueuer has to timestamp its
data before enqueueing. The timestamps can be obtained using a distributed counter
shared by all the enqueuers.

The purpose of timestamping is to determine the order to dequeue the items from
the local SPSCs. To efficiently maintain the timestamps and determine which SPSC to
dequeue from first, a tree structure with a min-heap property is built upon the enqueuer
nodes. The original algorithm leaves the exact representation of the tree open, for
example, the arity of the tree, which is shown to be 2 in Figure 12. The circle-shaped
nodes in this figure represent the nodes in this tree structure, which are shared by all
processes. Each node stores the minimum timestamp along with the owner enqueuer’s
rank (an identifier given to a process) in the subtree rooted at that node. After every
modification to the local SPSC, i.e., after an enqueue and a dequeue, the changes must
be propagated up to the root node.

timestamp is the
minimum

timestamp amang

children

uint32_t timestamp
uint32_t rank
data_t value

L J L J L J L J
T T T T

Local SPSC of enqueuer 0 Local SPSC of enqueusr 1 Local SPSC of enqueusr 2 Local SPSC of enqueuer 3

Figure 12: LTQueue’s structure.

To dequeue, the dequeuer simply looks at the root node to determine the rank of the
enqueuer to dequeue its SPSC.

The fundamental idea contributing to LTQueue’s wait-freedom is the wait-free
timestamp-propagation procedure. If there is a change to an enqueuer’s SPSC, the
timestamp of any nodes that lie on the path from the enqueuer to the root node is
refreshed. The timestamp-refreshing procedure is simple:
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« Call load-link on the node’s (timestamp, rank).

« Look at all the timestamps of the node’s children and determine the minimum
timestamp and its owner rank.

« Call store-conditional to store the new minimum timestamp and the new owner
rank to the current node.

Notice that due to contention, the timestamp-refreshing procedure can fail. In that
case, the timestamp-propagation procedure simply retries the timestamp-refreshing
procedure one more time. This second call, again, can fail. However, after this second
call, the node’s timestamp is guaranteed to be up-to-date. The intuition behind this
is demonstrated in Figure 13. Furthermore, because every node is refreshed at most
twice, the timestamp-refresh procedure should finish in a finite number of steps.

the node's fimestamp is guaranteed
1o be the minimum timestamp
amang the child nodes some time:

enqueue() or degueue() after the enqueue() or dequeue()

LL{) SC({minimum timestamp) LL{) SCiminimum timestamp)

current process

refresh_1() al refresh_2() fall

LL{)y SC(minimum timestamp)

process X B R e
ess 3

DIOGESS Y+t et eneeaaesanenaeaneetan s < >
refresh() SUCCEsS

Figure 13: Intuition on how timestamp-refreshing works.

The LTQueue algorithm avoids ABA entirely by utilizing load-link/store-conditional.
This represents a challenge to directly implementing this algorithm in a distributed
environment.

The memory reclamation responsibility is handled by the SPSC structure, which is
fairly trivial with a custom scheme.

The design of each enqueuer maintaining a separate SPSC allows multiple enqueuers
to successfully enqueue their data in parallel without stepping on each other’s toes.
This can potentially scale well to a large number of processes. However, scalability may
be limited due to potentially growing contention during timestamp propagation. The
performance of LTQueue in shared-memory environments may still have a lot of room
for improvement, i.e., more cache-aware design, avoiding unnecessary contention, etc.
Nevertheless, its timestamp-refreshing scheme is interesting in and of itself and can
potentially inspire the design of new algorithms. In fact, LTQueue’s idea is core to one
of our optimized distributed MPSC queue algorithms, Slotqueue (Section 4.3).

3.1.2 DQueue

DQueue [11] focuses on optimizing performance, aiming to be cache-friendly and
avoid expensive atomic instructions such as CAS.
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The basic structure of DQueue is demonstrated in Figure 14.

Segment

e

» — MULL Global queue

4 N

Engueuer

\ Local buffer /

Figure 14: DQueue’s structure.

The global queue where data is represented as a linked list of segments. A segment
is simply a contiguous array of data items. This design allows for unbounded queue
capacity while still allowing a fair degree of random access within a segment. This
allows us to use indices to index elements in the queue, thus permitting the use of
inexpensive FAA instructions to swing the head and tail indices.

Each enqueuer maintains a local buffer to batch enqueued items before flushing to
the global queue. This helps prevent contention and plays nicely with the cache. To
enqueue an item, an enqueuer simply FAA the head index to reserve a slot in the global
queue; the obtained index is stored along with the data in the local buffer so that when
flushing the local buffer, the enqueuer knows where to write the data into the global
queue. Note that while flushing, an index may point to a not-yet-existent slot in the
global queue. Therefore, new segments must be allocated on the fly and CAS-ed to the
end of the queue.

The dequeuer dequeues the items by looking at the head index. If the queue is not
empty but the slot at the head index is empty, the dequeuer utilizes a helping mecha-
nism by looking at all enqueuers to help them flush out their local buffer. After this,
the head slot is guaranteed to be non-empty, and the dequeuer can finally dequeue
this value.

The ABA problem is solved by relying on its safe memory reclamation scheme. In
DQueue, CAS is only used to update the tail pointer to point to the newly allocated
segment. Therefore, the ABA problem in DQueue only involves internal manipulation
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of pointers to dynamically allocated memory. This means that if a proper memory
reclamation scheme is used, the ABA problem cannot occur.

DQueue relies on a dedicated garbage collection thread to reclaim segments that
have been exhausted by the dequeuer. However, this should be a careful process as
even though some segments have been exhausted, some enqueuers can still hold an
index that references one of these segments. DQueue implements this by reclaiming
all exhausted segments if there is no enqueuer holding an index referencing these seg-
ments. Unfortunately, we believe DQueue’s scheme is unsafe. Specifically, as described,
DQueue allows the garbage collection thread to reclaim non-adjacent segments in
the global queue without patching any of the next pointers. Any segment just before
a reclaimed segment would point to a deallocated next segment. By definition, this
segment was not reclaimed because it is referenced by an enqueuer. This means this
enqueuer cannot traverse the next pointer chain to get to the end of the queue without
accessing an already-deallocated segment.

If adapted to a distributed environment, the flushing may be expensive, both from
the point of view of the enqueuer and the dequeuer. If the dequeuer has to help
every enqueuer to flush their local buffer, which should always result in at least one
remote operation, the cost would be prohibitively high. Similarly, each flush requires
the enqueuer to issue at least one remote operation, but this is at least acceptable as
flushing is infrequent.

Still, we can see that the pattern of maintaining a local buffer inside each enqueuer
repeats throughout the literature, which we can definitely apply when designing
distributed MPSC queues.

3.1.3 WRLQueue

WRLQueue [10] is a lock-free MPSC queue specifically designed for embedded real-
time systems. Its main purpose is to avoid excessive modification of storage space.

WRLQueue is simply a pair of buffers: one is worked on by multiple enqueuers, and the
other is worked on by the dequeuer. The structure of WRLQueue is shown in Figure 15.

Enqueuer Dequeuer

|

write_pos

Figure 15: WRLQueue’s structure.

The enqueuers batch their enqueues and write multiple elements onto the buffer at
once. They use the usual scheme of FAA-ing the tail index (write_pos in Figure 15) to
reserve their slots and write data items at their leisure.
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The dequeuer, upon invocation, will swap its buffer with the enqueuers’ buffer to de-
queue from it, as in Figure 16. However, WRLQueue explicitly states that the dequeuer
has to wait for all enqueue operations to complete in the other buffer before swapping.
If an enqueue suspends or dies, the dequeuer will experience a slowdown; this clearly
violates the property of non-blocking. Therefore, we believe that WRLQueue is block-
ing, concerning its dequeue operation.

Dequeuer K—\ Enqueuer

0 1 2
write_pos
Figure 16: WRLQueue’s dequeue operation
3.1.4 Jiffy

Jiffy [13] is a fast and memory-efficient wait-free MPSC queue by avoiding excessive
allocation of memory.

data_t data
state_t is_set

(0. SET)

(2. EMPTY) | (X, EMPTY) (4, SET) (X, EMPTY) | (X, EMPTY) (X, EMPTY) | (X, EMPTY) | (X, EMPTY) | (X, EMPTY) —» NULL

(1, (5,
HANDLED) HANDLED)

8 J T
T

Tall

Segment

Figure 17: Jifty’s structure.

Like DQueue, Jiffy represents the queue as a doubly-linked list of segments as in
Figure 17. This design again allows Jiffy to be unbounded while using head and tail
indices to index elements. Each segment contains a pointer to a dynamically allocated
array of slots, instead of directly storing the array. Each slot in the segment contains
the data item and a state of that slot (state_t in the figure). There are 3 states: SET,
EMPTY, and HANDLED. Initially, all slots are EMPTY. Instead of keeping a global head index,
there are per-segment Head indices pointing to the first non-HANDLED slot. However,
there is still one global Tail index shared by all the processes.

To enqueue, each enqueuer would FAA the Tail to reserve a slot. If the slot isn’t in the
linked list yet, it tries to allocate new segments and CAS them at the end of the linked
list until the slot is available. It then traverses to the desired segment by following the
previous pointers starting from the last segment. It then writes the data and sets the
slot’s state to SET. Notice that EMPTY slots actually have two substates. If an EMPTY slot
is before the Tail index, that slot is actually reserved by an enqueuer but has not been
set yet, while the EMPTY slots after the Tail index are truly empty.

To dequeue, the dequeuer would start from the Head index of the first segment,
scanning until it finds the first non-HANDLED slot before the end of the queue. If there is
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no such slot, the queue is empty, and the dequeuer would return nothing. If this slot is
SET, it simply reads the data item in this slot and sets it to HANDLED. If this slot is EMPTY,
that means this slot has been reserved by an enqueuer that has not finished. In this
case, the dequeuer performs a scan forward to find the first SET slot. If not found, the
dequeuer returns nothing. Otherwise, it continues to repeatedly scan all slots between
the first non-HANDLED and the last found SET slot until the first SET slot in this interval
is unchanged between 2 scans. Only then, the dequeuer would return the data item in
this SET slot and mark it as HANDLED.

Similar to DQueue, CAS is only used when appending new segments at the end of the
queue. Therefore, the ABA problem only involves internal manipulation of pointers to
dynamically allocated memory. Consequently, if a proper memory reclamation scheme
is utilized, the ABA problem is also properly solved.

Regarding memory reclamation, Jiffy does not specify a sufficient scheme: If one
enqueuer is delayed forever, no memory is ever reclaimed. As a consequence, if an
enqueuer is delayed for too long, the system will run out of memory, causing other
enqueuers to fail without making any progress. Effectively, Jiffy is not wait-free.

3.1.5 Remarks

Out of the 4 investigated MPSC queue algorithms, we quickly eliminate DQueue,
WRLQueue, and Jiffy as potential candidates for porting to a distributed environment
because they either do not provide a sufficient progress guarantee or protection against
the ABA problem and memory reclamation problem. Therefore, we will only adapt
LTQueue for distributed environments in the next section. LTQueue also presents some
challenges, though, as it utilizes LL/SC for the ABA solution, which does not exist in
distributed environments. Consequently, to adapt LTQueue, we have to work around
LTQueue’s usage of LL/SC.

3.2 Distributed MPSC queues

This section summarizes, to the best of our knowledge, existing MPSC queue algo-
rithms, which is reflected in Section 3.2.

The only paper we have found so far that either mentions directly or indirectly the
design of an MPSC queue is [1]. [1] introduces a hosted blocking (the original paper
claims that it is lock-free) bounded distributed MPSC queue called active-message
queue (AMQueue) that bears resemblance to WRLQueue in [10].
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FIFO queues Active-message queue (AMQueue) [1]
Progress guarantee of Blocking (*)
dequeue
Progress guarantee of Wait-free
enqueue
ABA solution No compare-and-swap usage
Safe memory reclamation Custom scheme

Table 3: Characteristic summary of existing distributed MPSC queues.
R stands for remote operations and L stands for local operations.
(*) [1] claims that it is lock-free.

The structure of AMQueue is given in Figure 18. The MPSC is split into 2 queues, each
maintaining its own set of control variables:

« Writercnt: The number of enqueuers currently writing in this queue.
« 0ffset: The index to the first empty entry in the queue. Note that any shared data
and control variables are hosted on the dequeuer.

To determine which queue to read and write, the QueueNum binary variable is used.
If QueueNum is 0, then the first queue is being actively written by enqueuers, and the
second queue is being reserved for the dequeuer, and vice versa.

Dequeuer
Queuehum

WriterCnt WriterCnt

Oiffset Oiffset

p— Data =\

— -

Figure 18: AMQueue’s structure.
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To enqueue, the enqueuer first reads the QueueNum variable to see which queue is active.
The enqueuer then registers for that queue by atomically FAA-ing the corresponding
Writercnt variable. If the fetched value is negative, though, the QueueNum queue is
being swapped for dequeuing, and the enqueuer has to decrement the writercnt vari-
able and repeat the process until Writercnt is positive. After a successful registration,
the enqueuer then reserves an entry in the data array by FAA-ing the offset variable.
After that, the enqueuer can enqueue data at its leisure. Upon success, the enqueuer
has to decrement Writercnt before returning.

To dequeue, the dequeuer inverts QueueNum to direct future enqueuers to the other
queue. The dequeuer then subtracts a sufficiently large number from writercnt to
signal to other enqueuers that it has started processing. The dequeuer has to wait for
all current enqueuers in the queue to finish by repeatedly checking the writercnt
variable, hence the blocking property. After all enqueuers have finished, the dequeuer
then batch-dequeues all data in the queue, resetting the offset and wWritercCnt vari-
ables to 0.

Based on our discussion, there is currently no non-blocking distrbuted MPSC queue
in the literature. This makes our research the first one of its kind to be about non-
blocking distributed MPSC queues. AMQueue will serve as a benchmarking baseline
for our MPSC queues in Chapter V.
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Chapter IV Distributed MPSC queues

Based on the MPSC queue algorithms we have surveyed in Chapter III, we propose
two wait-free distributed MPSC queue algorithms:
« dLTQueue (Section 4.2) is a direct modification of the original LTQueue [12]
without any usage of LL/SC, adapted for distributed environment.
« Slotqueue (Section 4.3) is inspired by the timestamp-refreshing idea of dLTQueue
[12] and repeated-rescan of Jiffy [13]. Although it still bears some resemblance to
LTQueue, we believe that it is more optimized for distributed context.

In actuality, dLTQueue and Slotqueue are more than simple MPSC algorithms. They
are “MPSC queue wrappers”, that is, given an SPSC queue implementation, they yield
an MPSC implementation. There is one additional constraint: The SPSC interface must
support an additional readFront operation, which returns the first data item currently
in the SPSC queue.

This fact has an important implication: when we are talking about the characteristics
(correctness, progress guarantee, performance model, ABA solution and safe memory
reclamation scheme) of an MPSC queue wrapper, we are talking about the correctness,
progress guarantee, performance model, ABA solution and safe memory reclamation
scheme of the wrapper that turns an SPSC queue to an MPSC queue:
o If the underlying SPSC queue is linearizable, the resulting MPSC queue is lineariz-
able.
+ The resulting MPSC queue’s progress guarantee is the weaker guarantee between
the wrapper’s and the underlying SPSC’s.
« If the underlying SPSC queue is safe against ABA problem and memory reclama-
tion, the resulting MPSC queue is also safe against these problems.
o If the underlying SPSC queue is unbounded, the resulting MPSC queue is also
unbounded.
 The theoretical performance of dLTQueue and Slotqueue has to be coupled with
the theoretical performance of the underlying SPSC.

The characteristics of these MPSC queue wrappers are summarized in Table 4. For
benchmarking purposes, we use a baseline distributed SPSC introduced in Section 4.1
in combination with the MPSC queue wrappers. The characteristics of the resulting
MPSC queues are also shown in Table 4.
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MPSC queues dLTQueue Slotqueue
Correctness Linearizable Linearizable
Progress guarantee Wait-free Wait-free
of dequeue
Progress guarantee Wait-free Wait-free
of enqueue
Dequeue time-| 4log,(n)R + 6logy(n)L 3R+ 2nL
complexity (*)
Enqueue time-com-| 6logy(n)R + 4logy(n)L 4R + 3L
plexity (%)
ABA solution Unique timestamp No hazardous ABA problem
Safe memory No dynamic memory alloca-| No dynamic memory alloca-
reclamation tion tion

Table 4: Characteristic summary of our proposed distributed MPSC queues.
(1) n is the number of enqueuers.
(2) R stands for remote operation and L stands for local operation.
(*) The underlying SPSC is assumed to be our simple distributed SPSC in Section 4.1.

The rest of this chapter is organized as follows. Section 4.1 describes a simple
baseline distributed SPSC that is utilized as the underlying SPSC in our MPSC queues.
Section 4.2 and Section 4.3 introduce dLTQueue and Slotqueue, our two wait-free
MPSC queues that are our main contributions in this thesis.

In these next few descriptions, we assume that each process in our program is assigned
a unique number as an identifier, which is termed as its rank. The numbers are taken
from the range of [0, size - 1], with size being the number of processes in our
program.

4.1 A simple baseline distributed SPSC

The two MPSC queue wrapper algorithms we propose in Section 4.2 and Section 4.3
both utilize a baseline distributed SPSC data structure, which we will present in this
section.

For implementation simplicity, we present a bounded SPSC, effectively make our
proposed algorithms support only a bounded number of elements. However, one can
trivially substitute another distributed unbounded SPSC to make our proposed algo-
rithms support an unbounded number of elements, as long as this SPSC supports the
same interface as ours.

The SPSC queue uses a circular array Data with a fixed Capacity. It maintains two
indices: First marks the oldest item not yet removed, and Last marks the next
available slot for insertion. Both indices use modulo arithmetic (First % Capacity and
Last % Capacity) to wrap around the array.
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For performance optimization, each process maintains local cached copies of these
indices in First_buf and Last_buf. All indices start at zero. The memory layout is
distributed between processes: the dequeuer hosts the First and Last indices, while
the enqueuer hosts the Data array itself.

Placement-wise, all queue data in this SPSC is hosted on the enqueuer while the control
variables i.e. First and Last, are hosted on the dequeuer.

Shared variables Enqueuer-local variables
Data: gptr<data_t> First_buf:uint64_t
First: gptr<uinté4_t> Last_buf: uint64_t
Last: gptr<uint64_t> Capacity: uint64_t

Dequeuer-local variables
First_buf: uint64_t
Last_buf: uint64_t
Capacity: uint64_t

The procedures of the enqueuer are given as follows.

Procedure 4: bool spsc_enqueue(data_t v)

—_

new_last = Last_buf + 1

2 if (new_last - First_buf > Capacity)

3 read(First, &First_buf)

4 | if (new_last - First_buf > Capacity)
return false

write(Data + Last_buf % Capacity, &v)

5
6
7 write(Last, &new_last)
8 Last_buf = new_last

9

return true

spsc_enqueue first computes the new Last value (Line 1). If the queue is full as
indicated by the difference the new Last value and First_buf (Line 2), there can still
be the possibility that some elements have been dequeued but First_buf has not been
synced with First yet, therefore, we first refresh the value of First_buf by fetching
from First (Line 3). If the queue is still full (Line 4), we signal failure (Line 5). Other-
wise, we proceed to write the enqueued value to the entry at Last_buf % Capacity
(Line 6), increment Last (Line 7), update the value of Last_buf (Line 8) and signal
success (Line 9).
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Procedure 5: bool spsc_readFront.(data_t* output)

10 if (First_buf >= Last_buf)

11 return false

12 read(First, &First_buf)

13 if (First_buf >= Last_buf)

14 return false

15 read(Data + First_buf % Capacity, output)

16 return true

spsc_readFront. first checks if the SPSC is empty based on the difference between
First_buf and Last_buf (Line 10). Note that if this check fails, we signal failure
immediately (Line 11) without refetching either First or Last. This suffices because
Last cannot be out-of-sync with Last_buf as we are the enqueuer and First can only
increase since the last refresh of First_buf, therefore, if we refresh First and Last,
the condition on Line 10 would return false anyways. If the SPSC is not empty, we
refresh First and re-perform the empty check (Line 13 - Line 14). If the SPSC is again
not empty, we read the queue entry at First_buf % Capacity into output (Line 15)
and signal success (Line 16).

The procedures of the dequeuer are given as follows.

Procedure 6: bool spsc_dequeue(data_t* output)

17 new_first = First_buf + 1

18 if (new_first > Last_buf)

19 read(Last, &Last_buf)

20 | if (new_first > Last_buf)

21 return false

22 read(Data + First_buf % Capacity, output)
23 write(First, &new_first)

24 First_buf = new_first

25 return true

spsc_dequeue first computes the new First value (Line 17). If the queue is empty as
indicated by the difference the new First value and Last_buf (Line 18), there can still
be the possibility that some elements have been enqueued but Last_buf has not been
synced with Last yet, therefore, we first refresh the value of Last_buf by fetching
from Last (Line 19). If the queue is still empty (Line 20), we signal failure (Line 21).
Otherwise, we proceed to read the top value at First_buf % Capacity (Line 22) into
output, increment First (Line 23) - effectively dequeue the element, update the value
of First_buf (Line 24) and signal success (Line 25).

Specialized Project Report - Semester 242 (2024 - 2025) Page 43/66



@ HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY
‘J FACULTY OF COMPUTER SCIENCE AND ENGINEERING

Procedure 7: bool spsc_readFronty(data_t* output)

26 if (First_buf >= Last_buf)

27 read(Last, &Last_buf)

28 | if (First_buf >= Last_buf)

29 return false

30 read(Data + First_buf % Capacity, output)

31 return true

spsc_readFront, first checks if the SPSC is empty based on the difference between
First_buf and Last_buf (Line 26). If this check fails, we refresh Last_buf (Line 27)
and recheck (Line 28). If the recheck fails, signal failure (Line 29). If the SPSC is not
empty, we read the queue entry at First_buf % Capacity into output (Line 30) and
signal success (Line 31).

4.2 dLTQueue - Straightforward LTQueue adapted for distributed
environment

This algorithm presents our most straightforward effort to port LTQueue [12] to
distributed context. The main challenge is that LTQueue uses LL/SC as the universal
atomic instruction and also an ABA solution, but LL/SC is not available in distributed
programming environments. We have to replace any usage of LL/SC in the original
LTQueue algorithm. We use compare-and-swap and the well-known monotonic time-
stamp scheme to guard against ABA problem.

4.2.1 Overview
The structure of our dLTQueue is shown as in Figure 19.

We differentiate between 2 types of nodes: enqueuer nodes (represented as the rectan-
gular boxes at the bottom of Figure 19) and normal tree nodes (represented as the
circular boxes in Figure 19).

Each enqueuer node corresponds to an enqueuer. Each time the local SPSC is enqueued
with a value, the enqueuer timestamps the value using a distributed counter shared by
all enqueuers. An enqueuer node stores the SPSC local to the corresponding enqueuer
and a min_timestamp value which is the minimum timestamp inside the local SPSC.

Each tree node stores the rank of an enqueuer process. This rank corresponds to the
enqueuer node with the minimum timestamp among the node’s children’s ranks. The
tree node that is attached to an enqueuer node is called a leaf node, otherwise, it is
called an internal node.

Note that if a local SPSC is empty, the min_timestamp variable of the corresponding
enqueuer node is set to MAX_TIMESTAMP and the corresponding leaf node’s rank is set
to DUMMY_RANK.
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Dequeuer

rank of the
enqueuer among
the children that
contains the

¥ DUMMY rank )
\ | \ |
data_t value
uint32_t timestamp D_D D Empty queue
min-timestamp =1 min-timestamp = 2 min-timestamp = 5 min-timestamp = MAX min-timestamp = MAX

Engueuer 0 Engueuver 1 Engueuer 2 Engueuver 3

rank =0 rank = 1 rank = 2 rank = 3

Figure 19: dLTQueue’s structure.

Placement-wise:
+ The enqueuer nodes are hosted at the corresponding enqueuer.
« All the tree nodes are hosted at the dequeuer.
+ The distributed counter, which the enqueuers use to timestamp their enqueued
value, is hosted at the dequeuer.

4.2.2 Data structure

Below is the types utilized in dLTQueue.

Types
data_t = The type of the data to be stored.

spsc_t = The type of the SPSC, this is assumed to be the distributed SPSC in
Section 4.1.

rank_t = The type of the rank of an enqueuer process tagged with a unique
timestamp (version) to avoid ABA problem.

struct
value: uint32_t
version: uint32_t
end

timestamp_t = The type of the timestamp tagged with a unique timestamp
(version) to avoid ABA problem.

struct

value: uint32_t
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version: uint32_t
end
node_t = The type of a tree node.
struct
rank: rank_t

end

The shared variables in our LTQueue version are as follows.

Note that we have described a very specific and simple way to organize the tree
nodes in dLTQueue in a min-heap-like array structure hosted on the sole dequeuer.
We will resume our description of the related tree-structure procedures parent()
(Procedure 8), children() (Procedure 9), leafNodeIndex() (Procedure 10) with this
representation in mind. However, our algorithm does not strictly require this represen-
tation and can be substituted with other more-optimized representations & distributed
placements, as long as the similar tree-structure procedures are supported.

Shared variables
Counter: gptr<uinté4_t>
A distributed counter shared by the enqueuers. Hosted at the dequeuer.
Tree_size: uint64_t
A read-only variable storing the number of tree nodes present in the dLTQueue.
Nodes: gptr<node_t>

An array with Tree_size entries storing all the tree nodes present in the
dLTQueue shared by all processes.
Hosted at the dequeuer.
This array is organized in a similar manner as a min-heap: At index 0 is the root
node. For every index ¢ > 0, L%J is the index of the parent of node ¢. For every
index 7 > 0, 27 + 1 and 27 + 2 are the indices of the children of node 1.
Dequeuer_rank: uint32_t
The rank of the dequeuer process. This is read-only.
Timestamps: A read-only array [0..size - 1] of gptr<timestamp_t>, with size
being the number of processes.
The entry at index 7 corresponds to the Min_timestamp distributed variable at the

enqueuer with an order of i.

Enqueuer-local variables The rank of the current enqueuer
Process_count: uint64_t process.
The number of processes. Min_timestamp: gptr<timestamp_t>
Self_rank: uint32_t Spsc: spsc_t
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This SPSC is synchronized with the
dequeuer.

Dequeuer-local variables

Process_count: uint64_t

The number of processes.
Spscs: array of spsc_t with
Process_count entries.

The entry at index ¢ corresponds to
the Spsc at the enqueuer with an
order of i.

Initially, the enqueuers and the dequeuer are initialized as follows:

Enqueuer initialization

Initialize Process_count, Self_rank

and Dequeuer_rank.

Initialize Spsc to the initial state.
Initialize Min_timestamp to
timestamp_t {MAX_TIMESTAMP, 03}.

4.2.3 Algorithm

Dequeuer initialization

Initialize Process_count, Self_rank
and Dequeuer_rank.

Initialize Counter to 0.

Initialize Tree_size to Process_count
* 2.

Initialize Nodes to an array with
Tree_size entries. Each entry is initial-
ized to node_t {DUMMY_RANK}.
Initialize Spscs, synchronizing each
entry with the corresponding en-
queuer.

Initialize Timestamps, synchronizing
each entry with the corresponding en-
queuer.

We first present the tree-structure utility procedures that are shared by both the

enqueuer and the dequeuer:

Procedure 8: uint32_t parent(uint32_t index)

2 return (index - 1) / 2

parent returns the index of the parent tree node given the node with index index.

These indices are based on the shared Nodes array. Based on how we organize the

Nodes array, the index of the parent tree node of index is (index - 1) / 2.
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Procedure 9: vector<uint32_t> children(uint32_t index)

left_child = index * 2 + 1
right_child = left_child + 1
res = vector<uint32_t>()

N s W

if (left_child >= Tree_size)

N

return res

8 res.push(left_child)

9 if (right_child >= Tree_size)
10 return res

11 res.push(right_child)

12 return res

Similarly, children returns all indices of the child tree nodes given the node with index
index. These indices are based on the shared Nodes array. Based on how we organize
the Nodes array, these indices can be either index * 2 + 1 or index * 2 + 2.

Procedure 10: uint32_t leafNodeIndex(uint32_t enqueuer_rank)

13 return Tree_size + enqueuer_rank

leafNodeIndex returns the index of the leaf node that is logically attached to the
enqueuer node with rank enqueuer_rank as in Figure 19.

The followings are the enqueuer procedures.

Procedure 11: bool enqueue(data_t value)

14 timestamp = faa(Counter, 1)

15 if (!spsc_enqueue(&Spsc, (value, timestamp)))
16 return false

17 propagatec()

18 return true

To enqueue a value, enqueue first obtains a count by FAA-ing the distributed counter
Counter (Line 14). Then, we enqueue the data tagged with the timestamp into the
local SPSC (Line 15). Then, enqueue propagates the changes by invoking propagate.()
(Line 17) and returns true.
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Procedure 12: void propagate.()

19 if (!refreshTimestampe())

20 refreshTimestamp.()

21 if ('refreshLeaf.())

22 refreshLeafe()

23 current_node_index = leafNodeIndex(Self_rank)

24 repeat

25 current_node_index = parent(current_node_index)
26 | if ('refresh.(current_node_index))

27 refreshe(current_node_index)

28 until current_node_index ==

The propagate. procedure is responsible for propagating SPSC updates up to the root
node as a way to notify other processes of the newly enqueued item. It is split into
3 phases: Refreshing of Min_timestamp in the enqueuer node (Line 19 - Line 20),
refreshing of the enqueuer’s leaf node (Line 21 - Line 22), refreshing of internal nodes
(Line 24 - Line 28). On Line 21 - Line 28, we refresh every tree node that lies between
the enqueuer node and the root node.

Procedure 13: bool refreshTimestampe()

29 min_timestamp = timestamp_t {}
30 read(Min_timestamp, &min_timestamp)
31 {old-timestamp, old-version} = min_timestamp
32 front = (data_t {}, timestamp_t {})
33 is_empty = !spsc_readFront(Spsc, &front)
34 if (is_empty)
return cas(Min_timestamp,

35 timestamp_t {old-timestamp, old-version},
timestamp_t {MAX_TIMESTAMP, old-version + 1})

36 else

return cas(Min_timestamp,
37 timestamp_t {old-timestamp, old-version},
timestamp_t {front.timestamp, old-version + 1})

The refreshTimestamp. procedure is responsible for updating the Min_timestamp of
the enqueuer node. It simply looks at the front of the local SPSC (Line 33) and CAS
Min_timestamp accordingly (Line 34 - Line 37).
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Procedure 14: bool refreshNode.(uint32_t current_node_index)

38 current_node = node_t {}
39 read(Nodes, current_node_index, &current_node)
40 {old-rank, old-version} = current_node.rank
41 min_rank = DUMMY_RANK
42 min_timestamp = MAX_TIMESTAMP
43 for child_node_index in children(current_node)
44 child_node = node_t {}
45 read(Nodes + child_node_index, &child_node)
46 {child_rank, child_version} = child_node
47 | if (child_rank == DUMMY_RANK) continue
43 child_timestamp = timestamp_t {}
49 read(Timestamps + child_rank, &child_timestamp)
50 | if (child_timestamp < min_timestamp)
51 min_timestamp = child_timestamp
52 min_rank = child_rank
return cas(Nodes + current_node_index,

53 node_t {rank_t {old_rank, old_version}},
node_t {rank_t {min_rank, old_version + 1}})

The refreshNode. procedure is responsible for updating the ranks of the internal
nodes affected by the enqueue. It loops over the children of the current internal nodes
(Line 43). For each child node, we read the rank stored in it (Line 46), if the rank is not
DUMMY_RANK, we proceed to read the value of Min_timestamp of the enqueuer node with
the corresponding rank (Line 49). At the end of the loop, we obtain the rank stored
inside one of the child nodes that has the minimum timestamp stored in its enqueuer
node (Line 51 - Line 52). We then try to CAS the rank inside the current internal node
to this rank (Line 53).

Procedure 15: bool refreshLeafe()

54 leaf_node_index = leafNodeIndex(Self_rank)

55 leaf_node = node_t {}

56 read(Nodes + leaf_node_index, &leaf_node)

57 {old_rank, old_version} = leaf_node.rank

58 min_timestamp = timestamp_t {}

59 read(Min_timestamp, &min_timestamp)

60 timestamp = min_timestamp.timestamp
return cas(Nodes + leaf_node_index,

61 node_t {rank_t {old-rank, old-version}},
node_t {timestamp == MAX ? DUMMY_RANK : Self_rank, old_version + 1})
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The refreshLeaf. procedure is responsible for updating the rank of the leaf node
affected by the enqueue. It simply reads the value of Min_timestamp of the enqueuer
node it is logically attached to (Line 59) and CAS the leaf node’s rank accordingly
(Line 61).

The followings are the dequeuer procedures.

Procedure 16: bool dequeue(data_t* output)

62 root_node = node_t {}

63 read(Nodes, &root_node)

64 {rank, version} = root_node.rank

65 if (rank == DUMMY_RANK) return false

66 output_with_timestamp = (data_t {}, timestamp_t {})

if (!spsc_dequeue(&Spscs[rank]),
&output_with_timestamp))

67

68 return false
69 *output = output_with_timestamp.data
70 propagateq(rank)

71 return true

To dequeue a value, dequeue reads the rank stored inside the root node (Line 64). If
the rank is DUMMY_RANK, the MPSC queue is treated as empty and failure is signaled
(Line 65). Otherwise, we invoke spsc_dequeue on the SPSC of the enqueuer with the
obtained rank (Line 67). We then extract out the real data and set it to output (Line 69).
We finally propagate the dequeue from the enqueuer node that corresponds to the
obtained rank (Line 70) and signal success (Line 71).

Procedure 17: void propagateg(uint32_t enqueuer_rank)

72 if (!'refreshTimestampgy(enqueuer_rank))

73 refreshTimestampq(enqueuer_rank)

74 if (!refreshLeafy(enqueuer_rank))

75 refreshLeaf,(enqueuer_rank)

76 current_node_index = leafNodeIndex(enqueuer_rank)
77 repeat

78 current_node_index = parent(current_node_index)
79 if (!refreshy(current_node_index))

80 refreshq(current_node_index)

81 until current_node_index ==

The propagates procedure is similar to propagate., with appropriate changes to
accommodate the dequeuer.
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Procedure 18: bool refreshTimestampy(uint32_t enqueuer_rank)

82 enqueuer_order = enqueuer_rank

83 min_timestamp = timestamp_t {}

84 read(Timestamps + enqueuer_order, &min_timestamp)

85 {old-timestamp, old-version} = min_timestamp

86 front = (data_t {}, timestamp_t {})

87 is_empty = !spsc_readFront(&Spscs[enqueuer_order], &front)
88 if (is_empty)

return cas(Timestamps + enqueuer_order,
89 timestamp_t {old-timestamp, old-version},
timestamp_t {MAX_TIMESTAMP, old-version + 1})

90 else

return cas(Timestamps + enqueuer_order,
91 timestamp_t {old-timestamp, old-version},
timestamp_t {front.timestamp, old-version + 1})

The refreshTimestampy procedure is similar to refreshTimestamp., with appropriate
changes to accommodate the dequeuer.

Procedure 19: bool refreshNodey(uint32_t current_node_index)

92 current_node = node_t {}
93 read(Nodes + current_node_index, &current_node)
94 {old-rank, old-version} = current_node.rank
95 min_rank = DUMMY_RANK
96 min_timestamp = MAX_TIMESTAMP
97 for child_node_index in children(current_node)
98 child_node = node_t {}
99 read(Nodes + child_node_index, &child_node)
100 {child_rank, child_version} = child_node
101 | if (child_rank == DUMMY_RANK) continue
102 child_timestamp = timestamp_t {}
103 read(Timestamps + child_rank, &child_timestamp)
104 if (child_timestamp < min_timestamp)
105 min_timestamp = child_timestamp
106 min_rank = child_rank
return cas(Nodes + current_node_index,

107 node_t {rank_t {old_rank, old_version}},
node_t {rank_t {min_rank, old_version + 1}})
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The refreshNodeq procedure is similar to refreshNode., with appropriate changes to
accommodate the dequeuer.

Procedure 20: bool refreshlLeafs(uint32_t enqueuer_rank)

108 leaf_node_index = leafNodeIndex(enqueuer_rank)
109 leaf_node = node_t {}
110 read(Nodes + leaf_node_index, &leaf_node)
111 {old_rank, old_version} = leaf_node.rank
112 min_timestamp = timestamp_t {}
113 read(Timestamps + enqueuer_rank, &min_timestamp)
114 timestamp = min_timestamp.timestamp
return cas(Nodes + leaf_node_index,

115 node_t {rank_t {old-rank, old-version}},
node_t {timestamp == MAX ? DUMMY_RANK : Self_rank, old_version + 1})

The refreshLeafy procedure is similar to refreshLeaf., with appropriate changes to
accommodate the dequeuer.

4.3 Slotqueue - dLTQueue-inspired distributed MPSC queue with
all constant-time operations

The straightforward dLTQueue algorithm we have ported in Section 4.2 pretty much
preserves the original algorithm’s characteristics, i.e. wait-freedom and time complex-
ity of O(logn) for dequeue and enqueue operations. We note that in shared-memory
systems, this logarithmic growth is fine. However, in distributed systems, this increase
in remote operations would present a bottleneck in enqueue and dequeue latency. Upon
closer operation, this logarithmic growth is due to the propagation process because
it has to traverse every level in the tree. Intuitively, this is the problem of we trying
to maintain the tree structure. Therefore, to be more suitable for distributed context,
we propose a new algorithm Slotqueue inspired by LTQueue, which uses a slightly
different structure. The key point is that both enqueue and dequeue only perform a
constant number of remote operations, at the cost of dequeue having to perform ©(n)
local operations, where n is the number of enqueuers. Because remote operations are
much more expensive, this might be a worthy tradeoff.

4.3.1 Overview
The structure of Slotqueue is shown as in Figure 20.

Each enqueuer hosts a distributed SPSC as in dLTQueue (Section 4.2). The enqueuer
when enqueues a value to its local SPSC will timestamp the value using a distributed
counter hosted at the dequeuer.
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Additionally, the dequeuer hosts an array whose entries each corresponds with an
enqueuer. Each entry stores the minimum timestamp of the local SPSC of the corre-
sponding enqueuer.

Dequeuer

minimum timestamp
Counter: 7 of local queue

timestamp_t 0 MAX 3 MAX 5

3, 2)

2,1)

{data_t, imestamp_t) (1,0

Enqueuer 0

Figure 20: Basic structure of Slotqueue.
4.3.2 Data structure

We first introduce the types and shared variables utilized in Slotqueue.

Types
data_t = The type of data stored.
timestamp_t = uint64_t

spsc_t = The type of the SPSC each enqueuer uses, this is assumed to be the
distributed SPSC in Section 4.1.

Shared variables
Slots: gptr<timestamp_t*>

An array of timestamp_t with the number of entries equal to the number of
enqueuers.

Hosted at the dequeuer.
Counter: gptr<uinté4_t>
A distributed counter.

Hosted at the dequeuer.
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Enqueuer-local variables
Dequeuer_rank: uint64_t
The rank of the dequeuer.
Process_count: uint64_t
The number of enqueuers.
Self_rank: uint32_t

The rank of the current enqueuer
process.

Spsc: spsc_t
This SPSC is synchronized with the
dequeuer.

Dequeuer-local variables

Dequeuer_rank: uint64_t
The rank of the dequeuer.

Process_count: uint64_t
The number of enqueuers.
Spscs: with

array of spsc_t

Process_count entries.
The entry at index 4 corresponds to
the Spsc at the enqueuer with an
order of 1.

Initially, the enqueuer and the dequeuer are initialized as follows.

Enqueuer initialization
Initialize Dequeuer_rank.
Initialize Process_count.
Initialize Self_rank.

Initialize the local Spsc to its initial
state.

4.3.3 Algorithm

Dequeuer initialization
Initialize Dequeuer_rank.
Initialize Process_count.
Initialize Counter to 0.

Initialize the Slots array with size
equal to the number of enqueuers
and every entry is initialized to
MAX_TIMESTAMP.

Initialize the Spscs array, the i-th en-
try corresponds to the Spsc variable of
the enqueuer of order i.

The enqueuer operations are given as follows.

Procedure 21: bool enqueue(data_t v)

timestamp = faa(Counter, 1)

3
4 if (!spsc_enqueue(&Spsc, (v, timestamp))) return false

(8]

if (!refreshEnqueue(timestamp))

(o)

refreshEnqueue(timestamp)

N

return true
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To enqueue a value, enqueue first obtains a timestamp by FAA-ing the distributed
counter (Line 3). It then tries to enqueue the value tagged with the timestamp (Line 4).
At Line 5 - Line 6, the enqueuer tries to refresh its slot’s timestamp.

Procedure 22: bool refreshEnqueue(timestamp_t ts)

8 enqueuer_order = enqueueOrder (Self_rank)
9 front = (data_t {}, timestamp_t {})
10 success = spsc_readFront(Spsc, &front)
11 new_timestamp = success ? front.timestamp : MAX_TIMESTAMP
12 if (new_timestamp != ts)
13 | return true
14 old_timestamp = timestamp_t {}
15 read(Slots + enqueuer_order, &old_timestamp)
16 success = spsc_readFront(Spsc, &front)
17 new_timestamp = success ? front.timestamp : MAX_TIMESTAMP
18 if (new_timestamp != ts)
19 return true
return cas(Slots + enqueuer_order,

20 old_timestamp,
new_timestamp)

refreshEnqueue’s responsibility is to refresh the timestamp stores in the enqueuer’s
slot to potentially notify the dequeuer of its newly-enqueued element. It first reads
the current front element (Line 10). If the SPSC is empty, the new timestamp is set
to MAX_TIMESTAMP, otherwise, the front element’s timestamp (Line 11). If it finds that
the front element’s timestamp is different from the timestamp ts it returns true
immediately (Line 12 - Line 13). Otherwise, it reads its slot’s old timestamp (Line 15)
and re-reads the current front element in the SPSC (Line 16) to update the new
timestamp. Note that similar to Line 13, refreshEnqueue immediately succeeds if the
new timestamp is different from the timestamp ts of the element it enqueues (Line 19).
Otherwise, it tries to CAS its slot’s timestamp with the new timestamp (Line 20).

The dequeuer operations are given as follows.
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Procedure 23: bool dequeue(data_t* output)

21 rank = readMinimumRank()

22 if (rank == DUMMY_RANK)

23 return false

24 output_with_timestamp = (data_t {}, timestamp_t {})
25 if (!spsc_dequeue(Spsc, &output_with_timestamp))

26 return false

27 *output = output_with_timestamp.data

28 if (!'refreshDequeue(rank))

29 refreshDequeue(rank)

30 return true

To dequeue a value, dequeue first reads the rank of the enqueuer whose slot currently
stores the minimum timestamp (Line 21). If the obtained rank is DUMMY_RANK, failure
is signaled (Line 22 - Line 23). Otherwise, it tries to dequeue the SPSC of the corre-
sponding enqueuer (Line 25). It then tries to refresh the enqueuer’s slot’s timestamp
to potentially notify the enqueuer of the dequeue (Line 28 - Line 29). It then signals
success (Line 30).

Procedure 24: uint64_t readMinimumRank ()

31 buffered_slots = timestamp_t[Process_count] {}
32 for index in 0. .Process_count

33 read(Slots + index, &bufferred_slots[index])
34 if every entry in bufferred_slots is MAX_TIMESTAMP
35 return DUMMY_RANK

26 let rank be the index of the first slot that contains the minimum timestamp
among bufferred_slots

37 for index in 0. .rank

38 read(Slots + index, &bufferred_slots[index])

39 min_timestamp = MAX_TIMESTAMP

40 for index in 0. .rank

41 timestamp = buffered_slots[index]

42 if (min_timestamp < timestamp)

43 min_rank = index

44 min_timestamp = timestamp

45 return min_rank

readMinimumRank’s main responsibility is to return the rank of the enqueuer from
which we can safely dequeue next. It first creates a local buffer to store the value
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read from Slots (Line 31). It then performs 2 scans of Slots and read every entry
into buffered_slots (Line 32 - Line 38). If the first scan finds only MAX_TIMESTAMPs,
DUMMY_RANK is returned (Line 35). From there, based on bufferred_slots, it returns
the rank of the enqueuer whose bufferred slot stores the minimum timestamp (Line 40
- Line 45).

Procedure 25: refreshDequeue(rank: int) returns bool

48 enqueuer_order = rank

49 old_timestamp = timestamp_t {}

50 read(Slots + enqueuer_order, &old_timestamp)

51 front = (data_t {}, timestamp_t {})

52 success = spsc_readFront(Spscs[enqueuer_order], &front)

53 new_timestamp = success ? front.timestamp : MAX_TIMESTAMP
return cas(Slots + enqueuer_order,

54 old_timestamp,
new_timestamp)

refreshDequeue’s responsibility is to refresh the timestamp of the just-dequeued
enqueuer to notify the enqueuer of the dequeue. It first reads the old timestamp of the
slot (Line 50) and the front element (Line 52). If the SPSC is empty, the new timestamp
is set to MAX_TIMESTAMP, otherwise, it is the front element’s timestamp (Line 53). It
finally tries to CAS the slot with the new timestamp (Line 54).
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Chapter V Evaluation

This section introduces our benchmarking process, including our setup, environment,
metrics of interest, and our microbenchmark program. Most importantly, we show-
case the preliminary results on how well our novel algorithms perform, especially
Slotqueue. We conclude this section with a discussion about the implications of these
results.

Currently, performance-related properties are our main focus.

5.1 Benchmarking metrics

This section provides an overview of the metrics we are interested in for our algo-
rithms. Performance-wise, latency and throughput are the two most popular metrics.
These metrics revolve around the concept of a “task”. In our context, a task is a single
method call of an MPSC queue algorithm, e.g., enqueue and dequeue. Note that in our
discussion, any two tasks are independent. Roughly speaking, two tasks are indepen-
dent if one does not need to depend on the output of another for it to finish or there
does not exist a bigger task that needs to depend on the outputs of the tasks. This rules
out pipeline parallelism, where a task needs to wait for the output of a preceding task,
and data parallelism, where a big task is split into and needs to wait for the outputs of
multiple smaller tasks.

5.1.1 Throughput

Throughput is the number of operations finished in a unit of time. Its unit is often
given as 22 (operations per second), 2= (operations per millisecond), or 22 (operations
per microsecond). Intuitively, throughput is closest to our notion of “performance”:
The higher the throughput, the more tasks are done in a unit of time and, thus, the
higher the performance. The implication is that our ultimate goal is to optimize the
throughput metric of our algorithms.

5.1.2 Latency

Latency is the time it takes for a single task to complete. Its unit is often given as
% (seconds per operation), Igl—; (milliseconds per operation), or % (microseconds per
operation).

Intuitively, to optimize latency, one should minimize the number of execution steps
required by a task. Therefore, it is obvious that optimizing for latency is much clearer
than optimizing for throughput.

In concurrent algorithms, multiple tasks are executed by multiple processes. We
observe that, if we fix the number of processes, the lower the average latency of a task,
the larger the number of tasks that can be completed by a process, which implies higher
throughput. Therefore, good latency often (but not always) implies good throughput.
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From the two points above, we can see that latency is a more intuitive metric to
optimize for, while being quite indicative of the algorithm’s performance.

One question is: how do we optimize for latency? As we have discussed, we should
minimize the number of execution steps. A key observation is that when the number
of processes grows, contention should also grow, thus causing the number of steps
taken by a task to grow and, thus, the average latency to deteriorate. Note that if we
manage to keep the average latency of a task fixed while also increasing the number
of processes, we gain higher throughput due to higher concurrency. The actionable
insight is that if we minimize contention in our algorithms, our algorithms should scale
with the number of processes.

Following this discussion, we should aim to discover and optimize highly contended
areas in our algorithms if we want to make them scale well to a large number of nodes/
processes.

5.2 Benchmarking baselines

We use three MPSC queue algorithms as benchmarking baselines:

dLTQueue + our custom SPSC: Our most optimized version of LTQueue while still
keeping the core algorithm intact. Slotqueue + our custom SPSC: Our modification to
dLTQueue to obtain a more optimized distributed version of LTQueue. AMQueue [1]:
A hosted bounded MPSC queue algorithm, already detailed in Section 3.2.

5.3 Microbenchmark program

Our microbenchmark is as follows:

All processes share a single MPSC; one of the processes is a dequeuer, and the rest are
enqueuers. The enqueuers enqueue a total of 10* elements. The dequeuer dequeues
10* elements. For MPSC, the MPSC is warmed up before the dequeuer starts.

We measure the latency and throughput of the enqueue and dequeue operations. This
microbenchmark is repeated 5 times for each algorithm, and we take the mean of the
results.

5.4 Benchmarking setup

The experiments are carried out on a four-node cluster residing in the HPC Lab at Ho
Chi Minh University of Technology. Each node is an Intel Xeon CPU E5-2680 v3, which
has 8 cores and 16 GB RAM. The interconnect used is Ethernet and, thus, does not
support true one-sided communication.

The operating system used is Ubuntu 22.04.5. The MPI implementation used is MPICH
version 4.0, released on January 21, 2022.

We run the producer-consumer microbenchmark on 1 to 4 nodes to measure both the
latency and performance of our MPSC algorithms.
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5.5 Benchmarking results

Figure 21, Figure 22, and Figure 23 showcase our benchmarking results, with the y-axis
drawn in log scale.

Comparative Enqueue Throughput Across Queue Implementations

Comparative Enqueue Latency Across Queue tation:

2

5

Enqueue Throughput (105 ops/s)

Enqueue Latency (us)

Number of Nodes (x8 cores)

1 2 3 a

Mmoo o e (b) Enqueue throughput benchmark re-
(a) Enqueue latency benchmark results. sults
Figure 21: Microbenchmark results for enqueue operation.

Comparative Dequeue Throughput Across Queue Implementations

Comparative Dequeue Latency Across Queue tation:
100 ! Number of Nodes (x8 cores) !
] " Moo ot o 4 (b) Dequeue throughput benchmark re-
(a) Dequeue latency benchmark results. sults

Figure 22: Microbenchmark results for dequeue operation.
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Comparative Total Throughput Across Queue Implementations

Queue Types
—8— SlotQueue
1014 —— dLTQueue
—— AMQueue

100

10-1

Total Throughput (10°5 ops/s)

1024

1 2 3 4
Number of Nodes (x8 cores)

Figure 23: Microbenchmark results for total throughput.

Here is the corrected version of the provided Typst paragraphs with grammatical and
spelling mistakes fixed, while keeping line breaks, wordings, and meanings intact:

The most evident thing is that Figure 23 and Figure 22b are almost identical. This
supports our claim that in an MPSC queue, the performance is bottlenecked by the
dequeuer.

For enqueue latency and throughput, Slotqueue performs far better than dLTQueue
while being slightly better than AMQueue. This is in line with our theoretical projec-
tion in Table 4. One concerning trend is that Slotqueue’s enqueue throughput seems to
degrade with the number of nodes, which signals a potential scalability problem. This
is further problematic in that our theoretical model suggests that the cost of enqueue
is always fixed. This is to be investigated further in the future.

For dequeue latency and throughput, Slotqueue and AMQueue are quite closely
matched, while being better than dLTQueue. This is expected, agreeing with our pro-
jection of dequeue wrapping overhead in Table 4. Furthermore, Slotqueue is conceived
as a more dequeuer-optimized version of dLTQueue. Based on this empirical result,
it is reasonable to believe this to be the case. Unlike enqueue, the dequeue latency of
Slotqueue seems to be quite stable, increasing very slowly. Because the dequeuer is the
bottleneck of an MPSC, this is a good sign for the scalability of Slotqueue.

In conclusion, based on Figure 23, Slotqueue seems to perform better than dLTQueue
and AMQueue in terms of both enqueue and dequeue operations, both latency-
wise and throughput-wise. The overhead of a logarithmic-order number of remote
operations in dLTQueue seems to be costly, adversely affecting its performance when
the number of nodes increases. Additionally, compared to AMQueue, dLTQueue and
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Slotqueue also have the advantage of fault tolerance, which, due to the blocking nature
of AMQueue, cannot be promised.
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Chapter VI Conclusion

In this thesis, we have looked into the principles of shared-memory programming e.g.
the use of atomic operations, to model and design distributed MPSC queue algorithms.
We specifically investigate the existing MPSC queue algorithms in the shared memory
literature and adapt them for distributed environments using our model. Following
this, we have proposed two new distributed MPSC queue algorithms: dLTQueue and
Slotqueue. We have proven various interested theoretical aspects of these algorithms,
namely, correctness, fault-tolerance and performance. To reflect on what we have
obtained theoretically, we have conducted some benchmarks on how queues behave,
using another algorithm known as active-message queue (AMQueue) from [1]. Finally,
we have discussed some anomalies discovered via the combined application of theory
and epiricism.
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